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Preface

Oftentimes, equations are given to students on various equation sheets on physics
tests. Although knowing the equations is important, it is even more important to know
the derivations of the equations as it provides a deeper understanding of the physical
concepts behind the equations and builds physical intuition required to solve problems.
Using the mathematical flexibility gained through proving formulas, students will better
be able to apply their knowledge to solve more complex physics problems.

These notes attempt to derive as many formulae and concepts as possible that pertain
to high school physics, from AP courses to Physics Olympiads. Equations featured in
AP Physics 1 and 2 are derived without calculus (as much as possible), while calculus
is employed when necessary to derive more difficult expressions. Vectors are represented
using boldface (v) in this text, and, a star (⋆) is used to mark the conclusion of each
concept/derivation.

The sections required for various tests are marked with the following colors:

• ▶ AP Physics 1

• ▶ AP Physics 2

• ▶ AP Physics C

• ▶ F=ma Exam

• ▶ USAPhO Exam
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Chapter 1

Thermodynamics

1.1 Statistical Thermodynamics

1.1.1 ▶ The Maxwell-Boltzmann Distribution

An ideal gas can be represented by a Gaussian distribution of the velocity of the singular
particles in the gas, given by the following distribution:

f(v) = 4√
π

[
m

2kBT

]3/2
v2e

−mv2
2kBT (1.1)

The function is known as the Maxwell-Boltzmann Distribution and although it is a
bit messy, it’s important to recognize what it means.

The function is a Probability Distribution Function (PDF), which is a special type
of function that describes the way in which a random system is arranged. If we consider
an arbitrary PDF ρ(x) where x is some state of the system, ρ has no real meaning at any
value of x. However, the area under ρ (integral) represents the probability of the sytem
taking on a state that lies between the bounds of integration. Thus, any PDF ρ(x) has
the property ˆ ∞

−∞
ρ(x)dx = 1 (1.2)

since the system must always be occupying one of its possible states. Similarly, the
probability of an event occurring in the interval (x, x + dx) is ρ(x)dx. For a container of
gas, the particles are all evenly distributed, meaning that the probability of a gas particles
having a velocity in the range (v, v + dv) equals the fraction of all the particles with that
velocity. Or,

dN

N
= f(v)dv (1.3)

where dN is the number of gas particles with a speed in the range (v, v + dv). Recall that
the expected value (or mean) of a system is defined as

⟨x⟩ =
∑

i

xip(xi)

where ⟨x⟩ is the average of x, xi is an arbitrary state, and p(xi) is the probability of xi

occurring. It follows that for continuous distributions

⟨x⟩ =
ˆ ∞

−∞
xρ(x)dx (1.4)

since x is a state, ρ(x)dx is the probability, and we are again summing over all possible
states. Similarly, the mean of any function of x is

⟨g(x)⟩ =
ˆ ∞

−∞
g(x)ρ(x)dx. (1.5)

1



2 Thermodynamics

The reason why we don’t change ρ(x) is because the fundamental randomization pro-
cess remains unchanged, and we are simply rescaling the quantity. For example, if we
wanted to find the average of the square of a die roll, we would multiply the outcomes
(1, 4, 9, 16, 25, 36) by the probability 1/6 and add them up to find the mean, which is the
same probability used to calculate the mean value of the die normally. This all makes
sense, because we aren’t changing anything about the die roll, just the output value of
each state. At any rate, these properties will be important when we examine macro-scale
properties of systems of small particles.

Going back to the Maxwell-Boltzmann distribution, we can break it into two parts:

f(v) = 4√
π

[
m

2kBT

]3/2

· v2e
−mv2
2kBT

The bottom part of the distribution relates to the actual distribution of the speeds of
the particles in the gas1 and is derived using statistical physics and experiment. The top
part is a normalization factor, which gives the function the property from eq. 2.2. The
Maxwell-Boltzmann distribution is special, though, since it’s normalized in such a way
that the area under the curve from 0 to ∞ is one, instead of the area along the entire x
axis. To see why, consider the following graph of f(v):

v

f(v)

Fig. 1.1: Maxwell-Boltzmann Distribution

Since objects cannot have negative speed, all of the particles in a gas must lie on the right
side of the graph, meaning ˆ ∞

0
f(v)dv = 1. (1.6)

This somewhat unusual normalization will be important in 1.1.2 when we integrate over
all particles ⋆

1.1.2 ▶ Root Mean Square Velocity

The root mean square (RMS) velocity is defined as the square root of the average of the
squares of the velocities of the particles in a system. Mathematically (and possibly much
more simply),

vRMS =
√

⟨v2⟩. (1.7)

1i.e. it’s the part that gives the graph its shape



1.1 Statistical Thermodynamics 3

RMS quantities appear a lot in statistical physics, and they are used preferential to normal
averages for a couple reasons:

1: The average value of an oscillating function may be zero, independent of the am-
plitude of the oscillations. However, it’s hardly intuitive for a wildly-oscillating function
to be described the same way as a barely-changing function. The RMS value fixes this
discrepancy since it squares all values before taking an average, providing a more accurate
representation of a quantity.

2: As we see in 1.1.3, since kinetic energy is defined with the square of the velocity,
average velocity is useless if we want to calculate the average kinetic energy. Thus, vRMS

is used instead of the normal average.

In any case, since we know the PDF for particles in a gas, we can use the definitions
listed in 1.1.1 to find a general expression. First, we can find the quantity ⟨v2⟩ by (notice
the bounds of integration from eq. 2.6)

⟨v2⟩ =
ˆ ∞

0
v2f(v)dv (1.8)

where f(v) is the Maxwell-Boltzmann distribution. Plugging in f(v) and rearranging
yields

2√
π

a3/2
ˆ ∞

0
v4e−av2

dv.

Integrating by parts with u = v3, du = 3v2dv and dw = ve−av2
dv, w = − 1

2ae−av2 , we have

2√
π

a3/2
[

− v3

2a
e−av2

∣∣∣∣∣
∞

−∞
+ 3

2a

ˆ ∞

0
v2e−av2

dv

]
(1.9)

The first term in the brackets is zero since the exponential decays to zero at infinity. To
find the integral on the right, we could use integration by parts again, but instead we can
use Feynman’s trick for a quicker solution. By properties of the Gaussian integral 2,ˆ ∞

0
e−av2

dv = 1
2

√
π

a
.

Comparing this property with the integral in eq. 2.8, we can observe the following clever
relation ˆ ∞

0
v2e−av2

dv = − d

da

ˆ ∞

0
e−av2

dv

where we take a derivative with respect to a, since the integral is a function of a 3. Thus,
the expression in eq. 2.8 becomes

⟨v2⟩ = 4√
π

a3/2
[ 3

2a

(
− d

da

1
2

√
π

a

)]

= 4√
π

a3/2
[

3
2a

(
1
4

√
π

a3/2

)]

= 3
2a

. (1.10)

2I won’t prove it here, but the derivation is very interesting and you should definitely check it out!
3v is a dummy variable, and is integrated out
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The RMS speed is the square root of this value, or

vrms =
√

⟨v2⟩

=
√

3
2a

=

√
3kBT

m
(1.11)

⋆

1.1.3 ▶ ▶ Internal Energy

The total internal energy of a thermodynamic system is defined as the total energy con-
tained within it. For an ideal gas, since there are no internal potentials, this energy is
simply the total kinetic energy of the gas particles, or

Uint = N⟨K⟩ (1.12)

where N is the number of particles and ⟨K⟩ is the number of gas particles. Using the
mechanical definition of kinetic energy,

⟨K⟩ = 1
2m⟨v2⟩ = 1

2mv2
rms

Hence, the total internal energy of a monatomic gas is

Uint = 3
2KBT . (1.13)

Alternatively, if we define n to be the number of moles of gas constant and the constant
R to be Avogadro’s number times kB, we have

Uint = 3
2(nNA)kBT = 3

2nRT (1.14)

Notice how this result is specifically for monatomic gas, and you can think of the equation
as the sum of the average kinetic energy in each degree of freedom (x,y,z axis), which gives
rise to the factor of 3/2.

Ki = 1
2mv2

x + 1
2mv2

y + 1
2mv2

z

For diatomic gasses, there are two4 additional rotational degrees of freedom, namely

Ki = 1
2mv2

x + 1
2mv2

y + 1
2mv2

z + 1
2Ixω2

x + 1
2Iyω2

y

Logically, the total internal energy should be

Uint = 5
2NkBT (1.15)

⋆

4Two, not three, since there is symmetry about two axes. For objects with less symmetry, there will be
three rotational axes (Try it! Try to find more than two unique rotational axes for a pencil, then try the
same with a smartphone!).
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1.1.4 ▶ Ideal Gas Law

The famous Ideal Gas Law PV = nRT was originally derived by experiment as an amal-
gamation of other emperical laws, namely Boyle’s Law, Charles’ Law, Gay-Lussac’s Law,
and Avogadro’s Law. However, using the kinetic theory of gasses, it’s possible to derive
the law from first principles.

We start by considering a cube with side length L filled with a monatomic ideal gas.
Since the gas exerts equal pressure in all directions, if we can relate the pressure of par-
ticles bouncing off of a single wall to the box’s volume and temperature, we simply get
the ideal gas law. For this derivation, we look at the particles bouncing off of the wall in
the positive x axis (shown in blue). In a small time ∆t, some particles traveling in the
positive x direction collide with the blue surface, and those particles take up the volume
defined by ∆l = vx∆t where vx is the average x component of the velocities of the gas
particles.

Fig. 1.2: Box with gas particles randomly moving inside. In a certain time ∆t, some particles inside the
section ∆l hit the blue wall.

In this section of the cube, the number of particles is the number density of particles in
the entire box multiplied by the volume of the section, since the particles are all evenly
distributed. That number is

N

V
∆lA = NAvx∆t

V
.

Of these particles that move on the x axis, half of them move towards the blue surface and
half away. However, only those that move toward the surface exert any pressure, bringing
our total considered particles to

NAvx∆t

2V
. (1.16)

Since the gas is ideal, it collides elastically withe the walls of the container, imparting a
force of F = 2mvx/∆t each. Thus, using eq. 2.16, the total force imparted on the blue
side is

NAmv2
x

V
. (1.17)

Since P = F/A, the average pressure on the blue side is

⟨P ⟩ = Nm⟨v2
x⟩

V
. (1.18)
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Since the particles are moving in all directions randomly, we can write the relation v2
rms =

⟨v2⟩ = ⟨v2
x⟩ + ⟨v2

y⟩ + ⟨v2
z⟩ = 3⟨v2

x⟩, which implies that ⟨v2
x⟩ = kBT

m . Substituting everything
in, we have5

P = NkBT

V

PV = NkBT (1.19)

PV = nRT (1.20)

⋆

5I removed the angle brackets around P here since the P in P V = nRT represents the average pressure
of the gas in a certain state of the gas. More specifically, the P in P V = nRT represents the "average"
over all of the microstates that a given macrostate encompasses.
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1.2 Macroscopic Thermodynamics

1.2.1 ▶ ▶ Work Done on an Ideal Gas

Finding the work done on an ideal gas is important, since we can combine it with the
first law of thermodynamics to derive some interesting relations (as seen later). To start,
consider cylinder of gas of volume V topped with a movable piston of area A. If we apply
a force F to the piston and depress it by a distance ∆x, the work done by this force is
simply

W = F∆x.

Dividing and multiplying by A yields

W = F

A
A∆x

W = −P∆V. (1.21)

Notice here that A∆x = −∆V . Since the cylinder is compressed, ∆V is negative. Thus,
we need to add a negative sign to make things work out. This negative sign makes sense,
since we’d expect that compressing a gas would do positive work. Why? Similar to a
spring, when you compress the gas you work against a force, you’re increasing the energy
of the system. At a molecular level, you are simply increasing the momentum of the
particles in the box as they collide with the surface of the piston! (see 1.1.4) ⋆

1.2.2 ▶ ▶ Heat Capacity of Gasses and Meyer’s Relation

The specific heat capacity C of a substance is defined as the ratio of the amount of heat
it takes to raise the temperature of a substance per mole of substance. In other words,

Q = nC∆T (1.22)

Solids and liquids have relatively constant heat capacities over most temperature inter-
vals, owing to their low thermal expansion. Gasses, on the other hand, have variable heat
capacities, primarily because of their ability to change volume. Thus, it’s helpful to define
a few heat capacities for gasses, and we can even derive some useful relations between them.

First is the specific heat capacity at constant volume or Cv. Since the volume of the
gas is constant, no work can be done on it and thus it can only change energy via heat
transfer. Plugging in appropriate expressions into the First Law of Thermodynamics, we
have (for a monatomic gas)

∆U = Q

3
2nR∆T = nCv∆T

Cv = 3
2R (1.23)
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The other notable heat capacity is the heat capacity at constant pressure. Writing out
the First Law of Thermodynamics for a constant pressure pressure yields

∆U = W + Q

3
2nR∆T = −P∆V + nCp∆T. (1.24)

Since pressure is constant, we have from the Ideal Gas Law that

∆V = nR∆T

P
(1.25)

Substituting eq. 2.25 into 2.24 and simplifying gives us

3
2nR∆T = −nR∆T + nCp∆T

Cp = 5
2R

Cp = Cv + R. (1.26)

Equation 2.26 is known as Mayer’s Relation and provides a convenient relation between
the heat capacity of a gas at constant volume and pressure. An important thing to see
is that it doesn’t say anything about the values of Cv or Cp, just their relation. In fact,
for diatomic gasses, the values for Cv and Cp are 5R/2 and 7R/2 respectively, which is a
consequence of the phenomenon discussed towards the end of 1.1.3 ⋆

1.2.3 ▶ The Adiabatic Curve

On a P/V diagram, isobaric processes are a horizontal line, isochoric processes are a
vertical line, and isothermal processes are a 1/x curve. These are all pretty intuitive, and
can be derived in a few steps. Less intuitive is the curve for an adiabatic process, which
we will derive below. By definition of an adiabatic process, any changes in internal energy
of a system must arise only from work done on the system, or

dU = 3
2nRdT = δW (1.27)

where δ represents the a small change in a path dependent quantity. Using 1.2.1 and the
Ideal Gas Law, we have

3
2nRdT = −PdV

nCvdT = −nR
TdV

V

Cv

R

ˆ
dT

T
= −

ˆ
dV

V

Cv

R
ln T = − ln V + C (1.28)
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where C is some constant. Rewriting R in terms of Cp and Cv as well as defining the ratio
γ = Cp/Cv, we have

ln T = Cv − Cp

Cv
ln V + C

ln T = (1 − γ) ln V + C

TV γ−1 = C (1.29)

which itself is a perfectly good relation between quantities for an adiabatic process. How-
ever, since we’re graphing things on a P/V diagram, it’s nice to have a relation between
P and V . Substituting the temperature using the Ideal Gas Law,

PV

nR
V γ−1 = C

PV γ = const. (1.30)

Since γ > 1, this curve looks similar to the curve for isothermal processes, but is a bit
steeper ⋆

1.2.4 ▶ Carnot’s Theorem

Carnot’s theorem is a direct result of the second law of thermodynamics, and is an im-
portant result for engine design. It states that the most efficient heat engine that runs
between two heat reservoirs is a perfectly reversible engine. The corollary of this state-
ment is that all reversible engines running between two reservoirs of different temperature
have the same efficiency.

We start the proof by considering a reversible heat engine R with efficiency ηR and an
arbitrary heat engine E with efficiency ηE operating between a hot and cold reservoir.

Hot Reservoir (TH)

Cold Reservoir (TC)

R E

Qh

Qc

Q′
h

Q′
c

W W

Fig. 1.3: A reversible and irreversible engine running between a hot and cold reservoir.

Both engines output work W but R takes in Qh and outputs Qc to TC while E takes in
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Q′
h and outputs Q′

c to TC . For the sake of the proof, assume that ηE > ηR, i.e.

W

Q′
h

>
W

Qh

Qh > Q′
h. (1.31)

Now, consider running R in reverse using the work done by E, so that R extracts heat Qc

from TC and deposits heat Qh into TH .

Hot Reservoir (TH)

Cold Reservoir (TC)

R E

Qh

Qc

Q′
h

Q′
c

W

Fig. 1.4: A modified setup.

Analyzing the entire system at this state, the two engines extract heat Qc − Q′
c > 06 from

Tc and deposit heat Qh −Qh′ > 0 into Th. Without any external work done on the system,
this transfer of heat from a cold reservoir to a hot reservoir is a direct violation of the
second law of thermodynamics, meaning that our initial assumption that ηE > ηR must
be false. Hence, there exists no engine more efficient than a reversible engine operating
between two reservoirs.

If reversible engines are the most efficient engine between to temperature reservoirs, they
must have the same efficiency, which is the maximum possible efficiency. Thus, the corol-
lary mentioned earlier is also true. In real life applications, Carnot’s theorem gives the
upper bound on efficiency of a given heat engine, although most commercial engines don’t
come close to the ideal Carnot engine ⋆

1.2.5 ▶ Efficiency of a Carnot Engine

The Carnot Engine is a perfectly reversible engine operating between a hot and a cold
temperature. As shown in 1.2.4, the efficiency of any such engine is the same for two reser-
voirs of given temperatures and is the upper bound for efficiency of an engine operating
between the temperatures. A common way to construct the Carnot Engine is as follows
(and as depicted in the diagram):

1. An isothermal expansion at hot temperature TH

6Qh = W + Qc ⇒ e.q. 1.31 ⇒ Qc > Q′
c
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2. An adiabatic expansion

3. An isothermal compression at cold temperature TC

4. An adiabatic compression

V

P

1

2

3

4

A

B

C

D

Fig. 1.5: Carnot Cycle, with two adiabatic and two isothermal processes. The hot temperature TH is
depicted in red while the cold temperature TC is depicted in blue.

To find the efficiency of the engine, consider first the definition of engine efficiency, which
is the ratio of the work output and the heat input. We can thus break each process down
and see where heat is being inputted and where work is extracted (note that all of the
following values are magnitudes).

1. Heat QH is inputted and work W1 is extracted. Since ∆U = 0, QH = W1.7

2. No heat is exchanged but work W2 is extracted.8

3. Heat QC is extracted and work W3 is inputted. Since ∆U = 0, QC = W3.

4. No heat is exchanged but work W4 is inputted.

By conservation of energy, the work output of the engine is QH − QC , meaning that the
efficiency of the engine is

ϵcarnot = Wout

QH
= QH − QC

QH
. (1.32)

7Note here that the volume increases at a positive pressure, meaning that the quantity W = −P ∆V
is negative, but the work that the gas does is positive. Why? It’s because the quantity −P ∆V is the
work done on the gas, not by the gas, i.e. it gives the work inputted into the gas, not the work extracted.
An intuitive way of thinking of it is like this: it takes effort to compress a piston and decrease its volume
(positive work input) and if released from a compressed state, the piston springs outwards (positive work
output).

8Again, W2 is a positive value despite there being an increase in volume.
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Since QH = W1, we can find QH by solving for the area under process 1:

QH = W1 =
ˆ VB

VA

PdV

= nRTH

ˆ VB

VA

dV

V

= nRTH ln
(

VB

VA

)
(1.33)

where VA and VB are the volumes of the gas at state A and B, respectively. By the same
logic,

QC = W3 =
ˆ VC

VD

PdV = nRTC ln
(

VC

VD

)
(1.34)

Plugging eq. 2.33 and 2.34 into 2.32, we have

ϵcarnot = 1 − TC

TH
· ln(VB/VA)

ln(VC/VD) (1.35)

From the derivation in 1.2.3 (specifically eq. 2.29), we can relate the volumes between the
start and end points of the adiabatic processes

TH

TC
=
(

VC

VB

)γ−1
=
(

VD

VA

)γ−1

VC

VD
= VB

VA
.

With this result, eq. 2.35 simply reduces to

ϵcarnot = 1 − TC

TH
. (1.36)

⋆
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Appendix

A.1 Useful Math References

A.1.1 Trigonometric Identities

sin2 x + cos2 x = 1

1 + tan2 x = sec2 x

1 + cot2 x = csc2 x

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x − sin2 x

tan(2x) = 2 tan x

1 − tan2 x

sin x

2 = ±
√

1 − cos x

2

cos x

2 = ±
√

1 + cos x

2

tan x

2 = 1 − cos x

sin x

= sin x

1 + cos x

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

sin x + sin y = 2 sin
(

x + y

2

)
cos

(
x − y

2

)

cos x + cos y = 2 cos
(

x + y

2

)
cos

(
x − y

2

)

A.1



A.2 Appendix

A.1.2 Taylor Series

sin x = x − x3

3! + x5

5! − x7

7! + . . .

cos x = 1 − x2

2! + x4

4! − x6

6! + . . .

ex = 1 + x + x2

2! + x3

3! + x4

4! + . . .

1
1 + x

= 1 + x + x2 + x3 + . . . {−1 < x < 1}

A.2 Helpful Proofs

A.2.1 Arc length and a Straight Line

Consider an arc subtended by a very small angle dθ in a circle of radius R.

R

R

S L dθ

Fig. A.1

The distance S equals Rθ while the distance L equals 2R sin(dθ/2). Taking the difference
of these two lengths gives

S − L = Rθ − 2R sin
(

dθ

2

)

= Rdθ − 2R

(
dθ

2 − dθ3

48 + dθ5

3840 − . . .

)

≈ dθ3

24 (A.1)

which is third-order small and thus will always be smaller than dθ, which is already
essentially zero. Since the two segments only differ to the third order in dθ, we consider
them to be equal for small angles ⋆



Helpful Proofs A.3

A.2.2 Properties of Ellipses

There is some important ellipse notation that should be understood before approaching
elliptical orbits. Let us start with a diagram of an ellipse (note that it’s not to scale):

ac

b

rp ra

Fig. A.2

The distance a is the semi-major axis of the ellipse while the distance b is the semi-minor
axis. The distance c is a representation of the eccentricity of the ellipse, i.e c = ϵa. If
we place the star at the leftmost focus, rp represents the perihelion distance while ra

represents the aphelion distance. From just these definitions, we can write

2a = ra + rp (A.2)

2c = ra − rp (A.3)

Next, by the definition of an ellipse, the distance from the top of the ellipse to each foci
must be a. So, we can write

b2 + c2 = a2 (A.4)
Multiplying eq. A.4 through by 4 and substituting using A.2 and A.3 gives

4b2 + r2
a − 2rarp + r2

p = r2
a + 2rarp + r2

p

b = √
rarp (A.5)

⋆

A.2.3 Small Angle Approximations

For small angles, we often make a few approximations for trigonometric functions. sin(θ)
is approximated to θ, since writing out a taylor expansion yields

θ − θ3

3! + θ5

5! − . . .

Ignoring higher-order terms just yields sin θ ≈ θ. Doing the same for cosine yields

1 − θ2

2! + θ4

4! − . . .

Ignoring high-order terms gives cos θ ≈ 1 − θ2

2 ⋆
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